Bootstrability in defect CFT

We study how the exact non-perturbative integrability methods in 4D N = 4 Super-Yang-Mills can work efficiently together with the numerical conformal bootstrap techniques to go beyond the spectral observables and access previously unreachable quantities such as correlation functions at finite coupling. We consider the 1D defect CFT living on a 1/2-BPS Wilson line, whose non-perturbative spectrum is governed by the Quantum Spectral Curve (QSC). In addition, we use that the deformed setup of a cusped Wilson line is also controlled by the QSC. In terms of the defect CFT, this translates into two nontrivial relations connecting integrated 4-point correlators to cusp spectral data, such as the Bremsstrahlung and Curvature functions – known analytically from the QSC. Combining these new constraints and the spectrum of the 10 lowest-lying states with the Numerical Conformal Bootstrap, we obtain very sharp rigorous numerical bounds for the structure constants of the first non-protected states. Furthermore, we also develop analytic functional bootstrability obtaining weak coupling results for several structure constants.

the 25th of October 2022, 14:30